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We study localized modes on the surface of a three-dimensional dynamical lattice. The stability of these
structures on the surface is investigated and compared to that in the bulk of the lattice. Typically, the surface
makes the stability region larger, an extreme example of that being the three-site “horseshoe”-shaped structure,
which is always unstable in the bulk, while at the surface it is stable near the anticontinuum limit. We also
examine effects of the surface on lattice vortices. For the vortex placed parallel to the surface, the increased
stability-region feature is also observed, while the vortex cannot exist in a state normal to the surface. More
sophisticated localized dynamical structures, such as five-site horseshoes and pyramids, are also considered.
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I. INTRODUCTION

Surface waves have been a subject of interest in a variety
of contexts, including surface plasmons in conductors [1]
and optical solitons in waveguide arrays [2], surface waves
in isotropic magnetic gels [3], water waves in the ocean in
geophysical hydrodynamics, and so on. Quite often, features
exhibited by such wave modes have no analog in the corre-
sponding bulk media, which makes their study especially
relevant. In particular, a great deal of interest has been drawn
to nonlinear surface waves in optics. It was shown theoreti-
cally [4] and observed experimentally [5] that discrete local-
ized nonlinear waves can be supported at the edge of a semi-
infinite array of nonlinear optical waveguide arrays. Such
solitary waves were predicted to exist not only in self-
focusing media (as in the above-mentioned works), but also
between uniform and self-defocusing media [4,6], or be-
tween self-focusing and self-defocusing media (e.g., in [7]).
They have been subsequently observed in media with qua-
dratic [8] and photorefractive [9,10] nonlinearities. In the
two-dimensional (2D) geometry, stable topological solitons
have been predicted in a saturable medium [11], which con-
stitute generalizations to lattice vortex solitons predicted in
Ref. [12]. Quasidiscrete vortex solitons have been experi-
mentally observed in a self-focusing bulk photorefractive
medium [13]. Theoretical predictions for a variety of species
of discrete 2D surface solitons [14—-18] and corner modes
[15,17], as well as surface breathers [17], have been reported
too. Subsequent work has resulted in the experimental obser-
vation of 2D surface solitons, of both fundamental and mul-
tipulse types, in photorefractive media [19], as well as in
asymmetric waveguide arrays written in fused silica [20].
Recently, surface solitons in more complex settings, such as
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chirped optical lattices in one-dimensional (1D) and 2D situ-
ations [21,22], at interfaces between photonic crystals and
metamaterials [23], and in the case of nonlocal nonlinearity
[24,25], have emerged.

Nearly all these efforts have been aimed at the study of
surface solitons in 1D and 2D geometries. The only three-
dimensional (3D) setting examined thus far assumed a trun-
cated bundle of fiberlike waveguides, incorporating the tem-
poral dynamics in longitudinal direction to produce 3D
“surface light bullets” in Ref. [26] (the respective 2D surface
structures were examined in Ref. [27]).

Our aim in the present work is to extend the analysis to
surface solitons in genuine 3D lattices. Our setup is relevant
to a variety of applications including, e.g., crystals built of
microresonators trapping photons [28], polaritons [29], or,
possibly, Bose-Einstein condensates in the vicinity of an
edge of a strong 3D optical lattice [30,31]. In particular, we
report results for discrete solitons at the surface of a 3D
lattice, i.e., 3D localized states that are similar to relevant
objects studied in the 2D setting of Ref. [14]. Thus, we will
study localized states such as dipoles and “horseshoes” abut-
ting on a set of three lattice sites, but also states that are
specific to the 3D lattice. A variety of species of such soli-
tons is examined below, and their stability on the surface is
compared to that in the bulk. Some localized structures, such
as dipoles, may be placed either normal or parallel to the
surface. We demonstrate that, typically, the enhanced contact
with the surface increases the stability region of the struc-
ture. Physically, this conclusion may be understood by the
fact that the surface reduces the local interactions to fewer
neighbors, rendering the system “more discrete,” and hence
more stable (by pushing the medium further away from the
continuum limit, where all solitons would be unstable against
the collapse). This effect is remarkable, e.g., for three-site
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horseshoes which are never stable in the bulk, but become
stabilized in the presence of the surface. However, the sur-
face may also have an adverse effect, inhibiting the existence
of a particular mode. The latter trend is exemplified by dis-
crete vortices, which, if placed parallel to the surface, feature
enhanced stability as compared to the bulk-mode counter-
part, but cannot exist with the orientation perpendicular to
the surface.

Surface-induced effects of a different kind, which are less
specific to discrete systems, are induced by the interaction of
a particular localized mode with its fictitious “mirror image.”
In terms of lattice models, the approach based on the analysis
of the interaction of a real mode with its image was proposed
in Ref. [32].

To formulate the model, we introduce unit vectors e,
=(1,0,0), e,=(0,1,0), and e;=(0,0,1) and define lattice
sites by n:E}llnjej with integer n;. We assume that the lat-
tice occupies a semi-infinite space, n3=1, and its dynamics
obeys the discrete nonlinear Schrédinger (DNLS) equation in
its usual form,

i¢n+8A¢n+0—|¢n|2¢n=0- (1)
Here ¢, is a complex discrete field, € is the coupling con-

stant, <]5n stands for the time derivative, the parameter o
=1 determines the sign of the nonlinearity (focusing or
defocusing respectively), and Ag, is the 3D discrete Laplac-
ian

3
Ad’n = E (¢n+ej + ¢n—ej - 2S¢n) (2)
j=1

for n;=2, while for n;=1 the term with subscript n—e; is to
be dropped (note that e; is the direction normal to the sur-
face).

It is interesting to point out here that an approach toward
understanding the dynamics of Eq. (1) in the vicinity of the
surface can be based on the above-mentioned concept of the
fictitious mirror image, formally extending the range of n; up
to ny=—o0, by supplementing the equation with the antisym-
metry condition,

¢nl,n2,—n3 =- ¢n|,n2n3' (3)

Indeed, this condition implies ¢”1’”23050’ which is equiva-
lent to the summation restriction in Eq. (2) as defined above.

To confine the analysis to localized solitary wave modes,
we impose zero boundary conditions, ¢,—0 at nj,— * o
and n;— o0, Additionally, s= =1 in Eq. (2)—this parameter
is introduced for convenience (see Sec. III B) and can be
freely rescaled using the transformation ¢— ¢e'” for an ap-
propriate choice of v and time rescaling. Stationary solutions
to Eq. (1) will be sought for as ¢,=exp(iAt)u,, where A is
the frequency and the lattice field u, obeys the equation

(A = oluy|)uy — eAu, =0. (4)

Our presentation is structured as follows. The following
section recapitulates the necessary background for the pre-
diction of the existence and stability of lattice solitons. In
Sec. III, we report a bifurcation analysis for various surface
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states, treated as functions of coupling constant &, with em-
phasis on the comparison with bulk counterparts of these
states. Section IV reports the study of the evolution of un-
stable surface states. Finally, Sec. V summarizes our findings
and presents conclusions.

II. THEORETICAL BACKGROUND

First, we outline some general properties of the model.
Equation (1) conserves two dynamical invariants, namely,
the norm N,

N= 2 |¢ (5)
n3=1

ny p==%

and the Hamiltonian H,

0 3
H= X <82[¢:(¢,,+ej—s¢,,)+c.c.]+§|¢nl4),
n3=1 j=1

| ©)

where the asterisk stands for complex conjugation. Station-
ary solutions to Eq. (4) with o==*1 are connected by the
staggering transformation [17,33]): if u, is a solution for

some A and o=+1, then (-1)"1*"2*"3y, is a solution for A
=12s5—A and o=-1. Consequently, it is sufficient to perform
the analysis of stationary solutions, including their stability,
for a single sign of the nonlinearity; thus, below we will fix
o=+1 (corresponding to the case of on-site self-attraction).

Solutions to Eq. (4) in the half space n;= 1, subject to the
boundary condition ¢,=0 for n3=0, as defined above, may
be continued antisymmetrically for the entire 3D space by
setting U,=u,, for ny=1 and U,=-u, for ny=<-1. Then,
according to results of Ref. [34], this leads to an immediate
conclusion, namely, that there exists a minimum norm N,;,
necessary for the existence of localized surface states in the
present model. In other words, no surface modes survive in
the limit of N— 0. In this connection, it is relevant to note
that numerical findings that will be presented below were
obtained, of course, for finite cubic lattices where, strictly
speaking, there is no lower limit for N necessary for the
existence of localized modes [17]. At this point, we have to
specify that in speaking about localized modes in a finite
lattice we understand solutions that are localized on a num-
ber of sites much smaller than the total number of sites in the
chosen direction used for numerical simulations. Next we
recall that, generally speaking, there exist several branches of
the nonlinear localized modes, i.e., for given & one can find
localized excitations at different values of the norm N. Using
the natural terminology we refer to higher (lower) branches
in speaking about solutions with larger (smaller) norm. In
this classification the surface modes we are dealing with cor-
respond to higher branches of the solutions of the corre-
sponding finite lattices, i.e., their norm cannot be made arbi-
trarily small (see also the relevant discussion below in Sec.
I1I B).

To find solution families, we start with the anticontinuum
(AC) limit £=0 [35]. In this limit, the lattice field is assumed
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to take nonzero values only at a few (“excited”) sites, which
determine the profile of the configuration to be seeded. The
continuation of the structure to € >0 is determined by the
Lyapunov reduction theorem [36]. More specifically, the so-
lution is expanded as a power series in g, the solvability
condition at each order being that the corresponding projec-
tion to the kernel generated by the previous order does not
give rise to secular terms [35].

The linear stability is then studied, starting from the usual
form of the perturbed solution,

&y = M(uy, + da,e™ + by, (7)

where J is a formal small parameter, and A is a stability
eigenvalue associated with the eigenvector /= {an,b:}. Sub-
stituting this into Eq. (1) yields the linearized system

. *k
iNay = — eAay + Aay — 2Juy*a, - uibn,

—iNbE == eAbY + ADE =2l - uay,

which can be cast in the form

HED HIDN (4 A
PUIERY 7422) (B ) = ”‘(B )3 (8)
where A and B are vectors composed of elements a, and b:,
respectively, while the matrices HPD (p,ge{l,2}) are
given by
HE == 1) = 6,00 (A + 658 = 2y )
3

- 82 (5n+ej,n’ + 5n—ej,n’)’

J=1

1,2) 2,1 2
HID = e 5 i, 9)

n,n’ n,n’

An underlying stationary solution is (spectrally) unstable if
there exists a solution to Eq. (8) with Re(\)>0. Otherwise,
the stationary solution is classified as a spectrally stable one.
As explained in Ref. [37], the Jacobian of the above-
mentioned solvability conditions is intimately connected to
the full eigenvalue problem. More specifically, if the eigen-
values y of the M X M eigenvalue problem of the Jacobian
(where M is the number of excited sites at the AC limit), then
the near-zero eigenvalues of the full stability problem can be
predicted to be A=\27ye”?, where p is the number of lattice
sites that separate the adjacent excited nodes of the configu-
ration at the AC limit.

II1. BIFURCATION ANALYSIS
A. Existence and stability of surface structures

In this section we study, by means of numerical methods,
the existence and stability of various 3D configurations, and
compare the results to the corresponding analytical predic-
tions. These configurations are obtained by starting from the
AC limit (¢=0), and are continued to & >0, using fixed-point
iterations. For all the numerical results presented in this
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FIG. 1. (Color online) Results for the dipoles oriented parallel
and normal to the surface. (a) Norm N versus the lattice coupling
constant . (b) Imaginary part of the linear stability eigenvalue:
solid (blue) and dashed (black) lines correspond, respectively, to
numerically found and analytically predicted forms. (c) Real part of
the critical (in)stability eigenvalue: the dashed (red) and solid (blue)
lines depict the normal- and parallel-oriented dipoles, respectively,
while the dashed-dotted (green) line corresponds to the bulk dipole.
(d) (In)stability eigenvalue for the parallel surface dipole placed at
distances from the surface starting from zero and up to five lattice
periods away (curves right to left). (e), (g) Configurations and (f),
(h) corresponding spectral stability planes just above the instability
threshold. The level contours, corresponding to Re(u, )
=+ 0.5 max{uy,, ,,} are shown, respectively, in dark gray (blue) and
gray (red). The instability thresholds for the dipoles oriented paral-
lel and normal to the surface are, respectively, €=0.117 and 0.120.
For comparison, the threshold for the bulk dipole is £=0.114.

work, we fix the normalization A=1 [see Eq. (4)], and use a
lattice of size 13 X 13 X 13, unless stated otherwise. Also, for
the presentation of the numerical results, we replace the trip-
let (n,,n,,n3) by (l,n,m), i.e., the surface corresponds to
m=1.

We start by examining dipoles aligned parallel or normal
to the surface. Figure 1(a) shows the norm of such states
versus the coupling constant &, while Fig. 1(b) depicts the
imaginary part of the stability eigenvalues for the bulk di-
pole, produced by the theory outlined in the previous section
[dashed (black) lines], and by the numerical computations
[solid (blue) lines]. It is worth mentioning that, for all the
different configurations that we report in this paper, we dis-
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FIG. 2. (Color online) Stability of the three-site horseshoe. Pan-
els are similar to those in Fig. 1. (c) compares the critical stability
eigenvalue, as a function of the lattice coupling &, for the surface
and bulk horseshoes [solid (blue) and dashed-dotted (green) lines,
respectively]. The bulk horseshoe is always unstable (due to a
purely real, higher-order eigenvalue), while the corresponding sur-
face configurations have a stability region (the corresponding eigen-
value becomes imaginary in this case). (d) and (e) correspond to the
surface horseshoe just above the stability threshold of £=0.239.

play the imaginary part of the stability eigenvalue only for
the bulk mode since the difference between the curves for the
different variants (bulk, parallel, or normal to the surface) is
minimal. It should be noted, however, that the contact with
the surface may produce higher-order (smaller) eigenvalues
that are not present in its bulk counterpart (results not shown
here). The theoretical prediction for the stability eigenvalues
is N=*24ei, which, as expected, is the same as in the out-
of-phase (twisted) 1D mode analyzed in Ref. [37], since the
structure is nearly one-dimensional, along the line connect-
ing the two excited sites. Figure 1(c) compares the largest
instability growth rate as a function of & for the bulk dipoles
[dashed-dotted (green) line] and those oriented normally and
parallel to the surface [dashed (red) and solid (blue) lines,
respectively]. Tt is seen that the stability interval of the di-
poles increases as its contact with the surface strengthens, in
accordance with the arguments presented above. In the case
of the bulk dipole, the instability occurs for values of the
coupling constant between £7=0.114 and &;=0.115. From
now on, when reporting computed instability thresholds, we
will use the lower bound for € (e.g., &y in the above example)
with the understanding that we always used the same reso-
Iution in e. For the dipole set normally to the surface, we
observe the onset of instability at £=0.117, while for the
parallel-oriented one at £=0.120. In Figs. 1(e)-1(h) we also
depict the shapes of the normal and parallel dipoles, just
below the instability threshold, along with their correspond-
ing spectral stability planes.

The stabilizing effects exerted by the surface depend, in a
great measure, on the distance of the configuration from the
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FIG. 3. (Color online) Stability for the five-site horseshoe at the
surface. Panels are identical to those in Fig. 2. In this case, the
stability threshold is at e=0.211, while for the bulk five-site horse-
shoe it is €=0.205. (d) and (e) depict the configuration and the
corresponding linear stability spectrum just above the critical point
of e=0.211.

surface, namely, the further away the configuration from the
surface, the smaller the effect is. This property is clearly seen
in Fig. 1(d), where we plot the (in)stability eigenvalue as a
function of the coupling for several values of the separation
of the parallel dipole from the surface. The curves, from right
to left, depict the results for the dipole set at a distance of
0.1,...,5 sites away from the surface (the O site refers to the
dipole sitting on the surface). As the panel demonstrates, the
stability interval is reduced as the dipole is pulled away from
the surface, converging toward a bulk dipole.

Let us now consider the horseshoe configurations, for
which the presence of the surface is critical to their stability.
In Fig. 2 we depict the properties of a three-site horseshoe,
which actually is a truncated version of a quadrupole (cf. the
2D situation [14]). As before, Fig. 2(a) shows the norm ver-
sus &, while Figs. 2(b) and 2(c) compare the stability of the
bulk horseshoe (the dashed-dotted line) and ones built near
the surface (the solid line). While the bulk horseshoes are
always unstable, similar to their 2D counterparts [14], the
ones placed near the surface are stable at small &, destabiliz-
ing at £=0.239. Figures 2(d) and 2(e) show the configuration
for the coupling just below the instability threshold, along
with the corresponding spectral plane. The analytical expres-
sions for stable eigenvalues are A=0, A== 2\3ei, A
=0(&?) (cf. the expressions obtained in Ref. [14] for the 2D
horseshoes).

Figure 3 illustrates the same features as before, but for the
five-site horseshoe. Unlike its three-site cousin, the bulk
five-site horseshoe is stable up to a critical value of the cou-
pling, £=0.205, while the surface variant has it stability re-
gion £<<0.211. The eigenvalues of the linearization in this
case can be computed similarly to those for the three-site
modes [14], as outlined above (cf. also Ref. [35]), which

036605-4



SURFACE SOLITONS IN THREE DIMENSIONS

(@)

0.065 007 . 0075 0.08
d
£ O
7 < 0 o
: —
3 2 0 2
765712 A xi0°

FIG. 4. (Color online) Stability of quadrupole modes. The lay-
out is similar to that in Fig. 3. In (c), due to the close proximity of
the thresholds, a close-up is shown for the critical stability eigen-
value versus the lattice coupling constant & for the parallel and
normal surface modes, and the bulk one [solid (blue) and dashed
(red) lines, and the dashed-dotted (green) line, respectively]. The
threshold for the bulk mode is £=0.068, while for the normal and
parallel quadrupoles it is, respectively, £=0.070 and 0.071. As be-
fore, (d) and (e) show the configuration just above the instability
threshold along with its corresponding spectral-stability plane.

eventually yields N=3.8042¢i, A=2.8284¢i, AN=2.3511¢ei, A
=0(&?), and A=0, in good agreement with the corresponding
numerical results, as shown in Fig. 3(b).

Next we consider the quadrupole configuration (see Fig.
4). The surface again exerts a stabilizing effect, albeit a
weaker one, when the quadrupole is placed normally and
parallel to the surface. In the bulk, the quadrupole loses sta-
bility at £=0.068, while the normal and parallel surface qua-
drupoles have stability thresholds, respectively, at £=0.070
and 0.071. The analytical approximation for the stability ei-
genvalues in this case are A=\8¢&i (a double eigenvalue), A
=2\ei, and a zero eigenvalue, which accurately capture the
numerical findings depicted in Fig. 4(b).

In Fig. 5 we present the results for four-site vortices. This
configuration, in contrast to the previous ones, is described
by a complex solution. In the AC limit, the vortex occupies
the same excited sites as the above-mentioned quadrupole,
but the phase profile, {0,7/2, 7,3 7/2}, emulates that of the
vortex of charge 1 [12,35]. The bulk four-site vortex (which
was discussed in Ref. [38]) loses its stability at £=0.438,
while the vortex parallel to the surface features an extended
stability region, up to £=0.505. However, the surface in this
case prohibits the existence of a vortex that would be ori-
ented normally to the surface layer, similarly to what was
found for 2D lattice vortices [14].

The simplest explanation for the complete absence of the
solution normal to the surface, compared with that of an
existing vortex waveform set parallel to the surface can ar-
guably be traced in the interaction of such vortices in the half
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FIG. 5. (Color online) Stability of the four-site vortex in a grid
of size 11X 11X 11. The dashed-dotted and solid lines show the
bulk vortex and the one parallel to the surface, respectively. The
layout is similar to that of the above figures. Instability in the bulk
occurs at £=0.438, and in the parallel surface vortex at £=0.505.
The vortex cannot exist with the orientation normal to the surface.
Panels (d) and (e) show the parallel surface vortex just above the
instability threshold of £=0.485. As in the previous figures, the
level contours corresponding to Re(u;,, )= *0.5 max{u,,,} are
shown, respectively, in dark gray (blue) and gray (red), while the
complementary ~ level  contours, defined as  Im(u,,,)
= *0.5 max{u, ,}, are shown by light gray (green) and very light
gray (yellow) hues, respectively.

space with their fictitious image (if the domain is equiva-
lently extended to the full space). In the case of the vortex
parallel to the surface, the situation is tantamount to the vor-
tex cube structures examined in [39,40], for which it was
established in [40] that the persistence conditions are satis-
fied (and, in fact, that such structures consisting of two out-
of-phase vortices should be linearly stable close to the AC
limit). On the other hand, for the case normal to the surface,
by examining the relevant interactions it can be observed (at
an appropriately high order) that the persistence conditions
of [35,37,40] cannot be satisfied and hence the structure can-
not be continued beyond the AC limit. That is why the struc-
ture can never be observed to exist, irrespective of the small-
ness of e.

The next species of stationary lattice solutions is a
pyramid-shaped structure, with characteristics displayed in
Fig. 6, whose base is a rhombus composed of four sites. The
remaining out-of-plane vertex site must have phase 0 or r,
since the phase values /2 and 37/2 at this site do not
produce a solution. The full set of pyramids [bulk, normal,
parallel—see Figs. 6(d)-6(f)] is completely unstable, as seen
in Fig. 6(c), the surface producing no stabilizing effect on it.
This strong instability actually arises at the lowest order in
the analytical _eigenvalue calculations, which yield A\
=245¢i, N=212ei, A=2¢, A\=0, and A=0(&?), once again
in very good agreement with the full numerical results of
Fig. 6.
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FIG. 6. (Color online) Instability of pyramid-shaped structures.
This configuration abuts on the base in the form of a rhombus, and
includes the out-of-plane site with zero phase. Three variants of this
configuration are displayed in (d)—(f): bulk and normal and parallel
to the surface, respectively. The stability of the three different vari-
ants of the pyramid is essentially identical, all three of them being
unstable.

B. Small-amplitude modes in a finite lattice

Since our numerical investigation of the surface modes
uses a finite lattice, which allows the existence of small-
amplitude modes (ones with the zero threshold in terms of
the norm—see the discussion in Sec. II), here we briefly
consider the modes in a finite lattice having the small-
amplitude limit. Our aim is to show that these modes belong
to lower branches, as compared with the “normal” surface
modes considered above. To this end, we concentrate on the
lattice of size M X M X M lattice, subject to zero boundary
conditions, which imply that the discrete Laplacian (2) is
modified at surfaces n;=1 and n;=M (j=1,...,3) by setting
the fields at sites n—e; and n+e;, respectively, equal to zero.
For the sake of definiteness, we fix here s=—1 in Eq. (2).

To determine the norm N of small-amplitude modes we
follow Ref. [17], and look for a solution to Eq. (4) with the
amplitude u, and coupling constant & being represented as
series,

Uy = €y y + EUyp + O(E),

e=gy+ €6, +0(E), (10)

in powers of the small parameter e=\8N/(M+1)*<1,
which vanishes in the limit of the infinite lattice (M — ©); in
other words, small € characterizes the “largeness” of the lat-
tice. We focus on real solutions here.

Substituting expansions (10) into Eq. (4) and gathering
terms of the same order in €, we rewrite Eq. (4) in the form
of a set of equations:
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FIG. 7. (Color online) Low-amplitude modes in a finite grid of
size 9X9 X9 with A=1.0. (a) Norm N versus coupling constant &
for several modes whose low-amplitude limit is parametrized by
vectors m, as calculated numerically and predicted by approxima-
tion (15) (solid and dashed lines, respectively). For comparison, the
dashed-dotted line depicts the norm for surface normal dipole. (b)
Real part of the critical (in)stability eigenvalue, calculated
numerically.

Au;

J.n

—SOAM]"HZF/"“. (11)

Here Fy,=0, F,,=A(gy/&0)ugn+(ugy)’; hence Eq. (11)
with j=0 gives rise to a linear eigenmode,

3
W _TT o m)
Uy, = sin , 12
on E (M+l (12)

with the corresponding approximation for the lattice cou-
pling constant,

3 -1
e™=Al 6423 cos(%) , (13)
j=1

parametrized by the vector m=(m,m,,ms). At the same
time, considering the solvability conditions for j=2, which
amounts to demanding the orthogonality of F,,, and u ,, we
obtain corrections to the coupling constants,

6288“) ’
64N g 3+ 5mj,(M+1)/2)~ (14)

8=88n)—

It follows from Eq. (14) that each of the linear modes (12) is
uniquely extended into a small-amplitude nonlinear one.
These modes are characterized by the linear dependence of
the norm on the coupling constant &:

3(a(m) _
_ 8A(1:/I+ 1)°(eg™ —€) . (15)

8(()m)1_[ (3 + 5mj,(M+1)/2)
=1

N

From Eq. (15) it follows that each mode, parametrized b;f
vector m, exists when & belongs to the interval 0<e =< s(()m .
The validity of approximation (15) is corroborated by the
coincidence of analytical and numerical results in the vicin-
ity of ™ (as shown in Fig. 7), where these modes reach
their small-amplitude limit. Such a property of these modes
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n61r%

2
m

FIG. 8. (Color online) Evolution of unstable dipoles: (a) a bulk
dipole; (b) and (c) dipoles placed parallel and normal to the surface,
respectively. In all cases, the dipole is subject to an oscillatory
instability, which is responsible for the eventual concentration of
most of the norm at a single site (i.e., the transition to a monopole).
Parameters are A=1, £=0.2, the lattice has a size of 13X 13X 13,
and times are indicated in the panels. All isocontour plots are de-
fined as Re(u;,, ,,) = + 0.75=Im(u, , ,,), and the initial configurations
were perturbed with random noise of amplitude 0.01. The coding
for the isocontours is as follows: dark gray (blue) and gray (red)
colors pertain to isocontours of the real part of the solutions, while
the light gray (green) and very light gray (yellow) colors correspond
to the isocontours of the imaginary part.

differs considerably from the case of the surface modes,
which do not possess a small-amplitude limit and require
some minimal value of the norm (for the normal dipole, de-
picted in Fig. 7 by the dashed-dotted line, the minimal norm
is =~1.262). Figure 7(b) shows that only the mode param-
etrized by vector m=(1,1,1) is stable for & close to sgm),
while other modes are completely unstable.

IV. DYNAMICS

In this section we examine the nonlinear evolution of the
various configurations, displaying the results in a set of fig-
ures (see Figs. 8—12). In each case, the evolution is initiated
at a value of the coupling e taken beyond the instability
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FIG. 9. (Color online) Evolution of the unstable three-site horse-
shoes: (a) bulk three-site horseshoe and (b) horseshoe oriented nor-
mally to the surface. In both cases, the unstable horseshoe is subject
to an oscillatory instability, which leads to the eventual concentra-
tion of most of the norm in a single-site structure. The isocontours
and parameters are the same as in Fig. 8 except that £=0.3.

threshold, and an initial small random perturbation is applied
in order to expedite the onset of the instability.

All the figures display the evolution of the instability at
six different moments of time, starting at =0, and ending at
a time well beyond the point at which the instability mani-

FIG. 10. (Color online) Evolution of unstable five-site horse-
shoes: (a) the bulk horseshoe, and (b) the five-site horseshoe ori-
ented normal to the surface. In both cases, the unstable horseshoe is
subject to an oscillatory instability, which triggers the transition to a
monopole. The isocontours and parameters are the same as in
Fig. 9.
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FIG. 11. (Color online) Evolution of unstable vortices: (a) the
bulk vortex for £=0.3 and (b) the vortex parallel to the surface, for
€=0.6 and A=1. The isocontour plots are defined by Re(u;,,,)
==+ 1=Im(u,,, ).

fests itself. All configurations that were predicted above to be
unstable through nonzero real parts of the (in)stability eigen-
value A\ indeed exhibit instability dynamics, which eventu-
ally results in a transition to a different configuration. In the
case of the dipoles and horseshoes, Figs. 8—10 show a spon-
taneous transition to monopole patterns, i.e., those centered
around a single excited site. On the other hand, in the case of
the vortices and pyramids shown in Figs. 11 and 12, a few
sites may remain essentially excited at the end of the evolu-
tion. The monopole is, obviously, the most robust dynamical
state in the lattice system, with the widest stability interval,
in comparison with other discrete structures. This simplest
state becomes unstable, for given A, only at values of the
coupling constant = A [38]. Another structure with a rela-
tively wide stability region is the dipole (the more stable the
wider the distance between its constituent sites [39]), conso-
nant with the observation that some of the structures (espe-
cially ones with a large number of excited sites, such as
vortices and pyramids) dynamically transform into dipoles.

Generally speaking, the exact scenario of the nonlinear
evolution and the finally established state depend on details
of the initial perturbation. In the figures, each configuration
is shown by isolevel contours of distinct hues. In particular,
dark gray (blue) and gray (red) are isocontours of the real
part of the solutions, while the light gray (green) and very
light gray (yellow) colors depict the imaginary part of the
same solutions.

A case that needs further consideration is that of the three-
site horseshoe. As observed from the stability analysis pre-
sented in Fig. 2, this horseshoe in the bulk gives rise to a
small unstable purely real eigenvalue for all values of €; see
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FIG. 12. (Color online) Evolution of unstable pyramids. Panels
(a), (b), and (c) display, respectively, the transformation of a bulk
pyramid, and of pyramids oriented normal and parallel to the sur-
face, for €=0.2.

the lower green dashed-dotted curve in Fig. 2(c) of the fig-
ure. Despite the presence of this eigenvalue, the evolution of
the unstable bulk three-site horseshoe is predominantly
driven by the unstable complex eigenvalues, if any [in fact,
for £ >0.226; see the dashed-dotted (green) line of Fig. 2(c)].
A careful analysis of the instability corresponding to the
small purely real eigenvalue for £ <<0.226 (i.e., before the
complex eigenvalues become unstable) reveals that the cor-
responding dynamics amounts to an extremely weak ex-
change of the norm between the two in-phase excited sites
(see Fig. 2). The norm exchange is driven by the correspond-
ing unstable eigenfunction, which looks like a dipole posi-
tioned at the two aforementioned in-phase sites. The diffi-
culty in observing this evolution mode is explained by the
fact that, in the course of the norm exchange, only ~0.1% of
the total norm is actually transferred between the two sites.
Furthermore, as mentioned earlier, the corresponding small
real eigenvalue is completely suppressed by the surface [see
Fig. 2(c)]. It is worth noting that such stable three-site horse-
shoe surface structures may also be generated by the evolu-
tion of more complex unstable wave forms, such as the five-
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site pyramids placed normally to the surface; see the bottom
panel in Fig. 12.

V. CONCLUSIONS

In this work, we have investigated localized modes in the
vicinity of a two-dimensional surface, in the framework of
the three-dimensional DNLS equation, which is a prototypi-
cal model of nonlinear dynamical lattices. We have found
that the surface may readily stabilize localized structures that
are unstable in the bulk (such as three-site horseshoes), and,
on the other hand, it may inhibit the formation of some other
structures that exist in the bulk (such as vortices that are
oriented normal to the surface, although ones parallel to the
surface do exist and have their stability region; a qualitative
explanation for these features was proposed, based on the
analysis of the interaction of the vortical state with its mirror
image). The most typical surface-induced effect is the expan-
sion of the stability intervals for various solutions that exist

PHYSICAL REVIEW E 78, 036605 (2008)

in the bulk and survive in the presence of the surface. This
feature may be attributed to the decrease, near the surface, of
the number of neighbors to which excited sites couple, since
the approach to the continuum limit, i.e., the strengthening of
the linear couplings to the nearest neighbors, is responsible
for the onset of the instability or disappearance of all the
localized stationary states in the three-dimensional dynami-
cal lattice.

On the other hand, while the techniques elaborated in
Refs. [35,37,40] for the analysis of localized states in bulk
lattices are quite useful in understanding the dominant stabil-
ity properties of the solutions, the surface gives rise to spe-
cific effects, such as the stabilization of higher-order solu-
tions or the suppression of some types of vortex structures,
which cannot be explained by these methods. Therefore, it
would be very relevant to modify these techniques, which
are based on the Lyapunov-Schmidt reductions, so as to take
the presence of the surface into consideration.
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